Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Sources of UHC Emissions from a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2009-04-20
2009-01-1446
Sources of unburned hydrocarbon (UHC) emissions are examined for a highly dilute (10% oxygen concentration), moderately boosted (1.5 bar), low load (3.0 bar IMEP) operating condition in a single-cylinder, light-duty, optically accessible diesel engine undergoing partially-premixed low-temperature combustion (LTC). The evolution of the in-cylinder spatial distribution of UHC is observed throughout the combustion event through measurement of liquid fuel distributions via elastic light scattering, vapor and liquid fuel distributions via laser-induced fluorescence, and velocity fields via particle image velocimetry (PIV). The measurements are complemented by and contrasted with the predictions of multi-dimensional simulations employing a realistic, though reduced, chemical mechanism to describe the combustion process.
Journal Article

Optimization of a HSDI Diesel Engine for Passenger Cars Using a Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0715
A multi-objective genetic algorithm coupled with the KIVA3V release 2 code was used to optimize the piston bowl geometry, spray targeting, and swirl ratio levels of a high speed direct injected (HSDI) diesel engine for passenger cars. Three modes, which represent full-, mid-, and low-loads, were optimized separately. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. High throughput computing was conducted using the CONDOR software. An automated grid generator was used for efficient mesh generation with variable geometry parameters, including open and reentrant bowl designs. A series of new spray models featuring reduced mesh dependency were also integrated into the code. A characteristic-time combustion (CTC) model was used for the initial optimization for time savings. Model validation was performed by comparison with experiments for the baseline engine at full-, mid-, and low-load operating conditions.
Technical Paper

Homogeneous Charge Progressive Combustion (HCPC): CFD Study of an Innovative Diesel HCCI Concept

2009-04-20
2009-01-1344
This paper concerns a study of an innovative concept to control HCCI combustion in diesel-fueled engines. The concept consists in forming a pre-compressed homogeneous charge outside the cylinder and in gradually admitting it into the cylinder during the combustion process. This new combustion concept has been called Homogeneous Charge Progressive Combustion (HCPC). CFD analysis was conducted to understand the feasibility of the HCPC concept and to identify the parameters that control and influence this novel HCCI combustion. A CFD code with detailed kinetic chemistry (AVL FIRE) was used in the study. Results in terms of pressure, heat release rate, temperature, and emissions production are presented that demonstrate the validity of the HCPC combustion concept.
Technical Paper

Heavy-Duty Diesel Combustion Optimization Using Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0716
A multi-objective genetic algorithm methodology was applied to a heavy-duty diesel engine at three different operating conditions of interest. Separate optimizations were performed over various fuel injection nozzle parameters, piston bowl geometries and swirl ratios (SR). Different beginning of injection (BOI) timings were considered in all optimizations. The objective of the optimizations was to find the best possible fuel economy, NOx, and soot emissions tradeoffs. The input parameter ranges were determined using design of experiment methodology. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. For the optimization of piston bowl geometry, an automated grid generator was used for efficient mesh generation with variable geometry parameters. The KIVA3V release 2 code with improved ERC sub-models was used. The characteristic time combustion (CTC) model was employed to improve computational efficiency.
Technical Paper

Integration of a Continuous Multi-Component Fuel Evaporation Model with an Improved G-Equation Combustion and Detailed Chemical Kinetics Model with Application to GDI Engines

2009-04-20
2009-01-0722
A continuous multi-component fuel evaporation model has been integrated with an improved G-equation combustion and detailed chemical kinetics model. The integrated code has been successfully used to simulate a gasoline direct injection engine. In the multi-component fuel model, the theory of continuous thermodynamics is used to model the properties and composition of multi-component fuels such as gasoline. In the improved G-equation combustion model a flamelet approach based on the G-equation is used that considers multi-component fuel effects. To precisely calculate the local and instantaneous residual which has a great effect on the laminar flame speed, a “transport equation residual” model is used. A Damkohler number criterion is used to determine the combustion mode in flame containing cells.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
Journal Article

Effects of Piston Bowl Geometry on Mixture Development and Late-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2008-04-14
2008-01-1330
Low-temperature combustion (LTC) strategies for diesel engines are of increasing interest because of their potential to significantly reduce particulate matter (PM) and nitrogen oxide (NOx) emissions. LTC with late fuel injection further offers the benefit of combustion phasing control because ignition is closely coupled to the fuel injection event. But with a short ignition-delay, fuel jet mixing processes must be rapid to achieve adequate premixing before ignition. In the current study, mixing and pollutant formation of late-injection LTC are studied in a single-cylinder, direct-injection, optically accessible heavy-duty diesel engine using three laser-based imaging diagnostics. Simultaneous planar laser-induced fluorescence of the hydroxyl radical (OH) and combined formaldehyde (H2CO) and polycyclic aromatic hydrocarbons (PAH) are compared with vapor-fuel concentration measurements from a non-combusting condition.
Technical Paper

Numerical Predictions of Diesel Flame Lift-off Length and Soot Distributions under Low Temperature Combustion Conditions

2008-04-14
2008-01-1331
The lift-off length plays a significant role in spray combustion as it influences the air entrainment upstream of the lift-off location and hence the soot formation. Accurate prediction of lift-off length thus becomes a prerequisite for accurate soot prediction in lifted flames. In the present study, KIVA-3v coupled with CHEMKIN, as developed at the Engine Research Center (ERC), is used as the CFD model. Experimental data from the Sandia National Labs. is used for validating the model predictions of n-heptane lift-off lengths and soot formation details in a constant volume combustion chamber. It is seen that the model predictions, in terms of lift-off length and soot mass, agree well with the experimental results for low ambient density (14.8 kg/m3) cases with different EGR rates (21% O2 - 8% O2). However, for high density cases (30 kg/m3) with different EGR rates (15% O2 - 8% O2) disagreements were found.
Technical Paper

Multidimensional Simulation of the Influence of Fuel Mixture Composition and Injection Timing in Gasoline-Diesel Dual-Fuel Applications

2008-04-14
2008-01-0031
Homogeneous charge compression ignition (HCCI) combustion is considered to be an attractive alternative to traditional internal combustion engine operation because of its extremely low levels of pollutant emissions. However, there are several difficulties that must be overcome for HCCI practical use, such as difficult ignition timing controllability. Indeed, too early or too late ignition can occur with obvious drawbacks. In addition, the increase in cyclic variation caused by the ignition timing uncertainty can lead to uneven engine operation. As a way to solve the combustion phasing control problem, dual-fuel combustion has been proposed. It consists of a diesel pilot injection used to ignite a pre-mixture of gasoline (or other high octane fuel) and air. Although dual-fuel combustion is an attractive way to achieve controllable HCCI operation, few studies are available to help the understanding of its in-cylinder combustion behavior.
Technical Paper

A Computational Investigation into the Effects of Spray Targeting, Bowl Geometry and Swirl Ratio for Low-Temperature Combustion in a Heavy-Duty Diesel Engine

2007-04-16
2007-01-0119
A computational study was performed to evaluate the effects of bowl geometry, fuel spray targeting and swirl ratio under highly diluted, low-temperature combustion conditions in a heavy-duty diesel engine. This study is used to examine aspects of low-temperature combustion that are affected by mixing processes and offers insight into the effect these processes have on emissions formation and oxidation. The foundation for this exploratory study stems from a large data set which was generated using a genetic algorithm optimization methodology. The main results suggest that an optimal combination of spray targeting, swirl ratio and bowl geometry exist to simultaneously minimize emissions formation and improve soot and CO oxidation rates. Spray targeting was found to have a significant impact on the emissions and fuel consumption performance, and was furthermore found to be the most influential design parameter explored in this study.
Technical Paper

Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics

2007-04-16
2007-01-0165
In this paper, knock in a Ford single cylinder direct-injection spark-ignition (DISI) engine was modeled and investigated using the KIVA-3V code with a G-equation combustion model coupled with detailed chemical kinetics. The deflagrative turbulent flame propagation was described by the G-equation combustion model. A 22-species, 42-reaction iso-octane (iC8H18) mechanism was adopted to model the auto-ignition process of the gasoline/air/residual-gas mixture ahead of the flame front. The iso-octane mechanism was originally validated by ignition delay tests in a rapid compression machine. In this study, the mechanism was tested by comparing the simulated ignition delay time in a constant volume mesh with the values measured in a shock tube under different initial temperature, pressure and equivalence ratio conditions, and acceptable agreements were obtained.
Technical Paper

Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine

2007-04-16
2007-01-0193
There is a significant global effort to study low temperature combustion (LTC) as a tool to achieve stringent emission standards with future light duty diesel engines. LTC utilizes high levels of dilution (i.e., EGR > 60% with <10%O2 in the intake charge) to reduce overall combustion temperatures and to lengthen ignition delay, This increased ignition delay provides time for fuel evaporation and reduces in-homogeneities in the reactant mixture, thus reducing NOx formation from local temperature spikes and soot formation from locally rich mixtures. However, as dilution is increased to the limits, HC and CO can significantly increase. Recent research suggests that CO emissions during LTC result from the incomplete combustion of under-mixed fuel and charge gas occurring after the premixed burn period [1, 2]1. The objective of the present work was to increase understanding of the HC/CO emission mechanisms in LTC at part-load.
Technical Paper

Development of a Hybrid, Auto-Ignition/Flame-Propagation Model and Validation Against Engine Experiments and Flame Liftoff

2007-04-16
2007-01-0171
In previous publications, Singh et al. [1, 2] have shown that direct integration of CFD with a detailed chemistry auto-ignition model (KIVA-CHEMKIN) performs reasonably well for predicting combustion, emissions, and flame structure for stratified diesel engine operation. In this publication, it is shown that the same model fails to predict combustion for partially premixed dual-fuel engines. In general, models that account for chemistry alone, greatly under-predict cylinder pressure. This is shown to be due to the inability of such models to simulate a propagating flame, which is the major source of heat release in partially premixed dual-fuel engines, under certain operating conditions. To extend the range of the existing model, a level-set-based, hybrid, auto-ignition/flame-propagation (KIVA-CHEMKIN-G) model is proposed, validated and applied for both stratified diesel engine and partially premixed dual-fuel engine operation.
Technical Paper

Multidimensional Simulation of PCCI Combustion Using Gasoline and Dual-Fuel Direct Injection with Detailed Chemical Kinetics

2007-04-16
2007-01-0190
Homogeneous or partially premixed charge compression ignition combustion is considered to be an attractive alternative to traditional internal combustion engine operation because of its extremely low levels of pollutant emissions. However, since it is difficult to control the start of combustion timing, direct injection of fuel into the combustion chamber is often used for combustion phasing control, as well as charge preparation. In this paper, numerical simulations of compression ignition processes using gasoline fuel directly injected using a low pressure, hollow cone injector are presented. The multi-dimensional CFD code, KIVA3V, that incorporates various advanced sub-models and is coupled with CHEMKIN for modeling detailed chemistry, was used for the study. Simulation results of the spray behavior at various injection conditions were validated with available experimental data.
Technical Paper

Soot Structure in a Conventional Non-Premixed Diesel Flame

2006-04-03
2006-01-0196
An analysis of the soot formation and oxidation process in a conventional direct-injection (DI) diesel flame was conducted using numerical simulations. An improved multi-step phenomenological soot model that includes particle inception, particle coagulation, surface growth and oxidation was used to describe the soot formation and oxidation process. The soot model has been implemented into the KIVA-3V code. Other model Improvements include a piston-ring crevice model, a KH/RT spray breakup model, a droplet wall impingement model, a wall-temperature heat transfer model, and the RNG k-ε turbulence model. The Shell model was used to simulate the ignition process, and a laminar-and-turbulent characteristic time combustion model was used for the post-ignition combustion process. Experimental data from a heavy-duty, Cummins N14, research DI diesel engine operated with conventional injection under low-load conditions were selected as a benchmark.
Technical Paper

Premixed Compression Ignition (PCI) Combustion with Modeling-Generated Piston Bowl Geometry in a Diesel Engine

2006-04-03
2006-01-0198
Sustainable PCI combustion was achieved in a light-duty diesel engine through the installation of a 120° spray angle nozzle and modeling-generated piston bowl geometry developed for compatibility with early start-of-injection timings. Experimental studies were conducted to determine favorable settings for boost pressure, SOI timing, and EGR rate at 2000 rev/min, 5 bar BMEP. An optimal SOI timing was discovered at 43° BTDC where soot and NOx emissions were reduced 89% and 86%, respectively. A 10% increase in fuel consumption was attributed to increased HC and CO emissions as well as non-optimal combustion phasing. Combustion noise was sufficiently attenuated through the use of high EGR rates. The maximum attainable load for PCI combustion was limited by the engine's peak cylinder pressure and cylinder pressure rise rate constraints.
Technical Paper

Development and Application of a Non-Gradient Step-Controlled Search Algorithm for Engine Combustion Optimization

2006-04-03
2006-01-0239
A new search technique, called Non-Gradient Step-Controlled algorithm (NGSC), is presented. The NGSC was applied independently from pre-selected starting points and as a supplement to a Genetic Algorithm (GA) to optimize a HSDI diesel engine using split injection strategies. It is shown that the NGSC handles well the challenges of a complex response surface and factor high-dimensionality, which demonstrates its capability as an efficient and accurate tool to seek “local” convergence on complex surfaces. By directly tracking the change of a merit function, the NGSC places no requirement on response surface continuity / differentiability, and hence is more robust than gradient-dependent search techniques. The directional search mechanism takes factor interactions into consideration, and search step size control is adopted to facilitate search efficiency.
Technical Paper

An Experimental Investigation of Partially Premixed Combustion Strategies Using Multiple Injections in a Heavy-Duty Diesel Engine

2006-04-03
2006-01-0917
Optimizations were performed on a single-cylinder heavy-duty Caterpillar SCOTE 3401E engine for NOx, PM and BSFC reductions. The engine was equipped with a Caterpillar 300B HEUI fuel injection system capable of up to four injections with timings from 90 BTDC to 90 ATDC. The engine was operated at a medium load (57%), high speed (1737 rev/min) operation point. A micro-genetic algorithm was utilized to optimize a hybrid, double-injection strategy, which incorporated an early, premixed pilot injection with a late main injection. The fuel injection parameters, intake boost pressure, and EGR were considered in the optimization. The optimization produced a parameter set that met the 2007 and 2010 PM emissions mandate of 0.0134 g/kW-hr, and was within the 1.5x not to exceed NOx + HC mandate of 2.694 g/kW-hr. Following the optimization exercise, further parametric interaction studies were performed to reveal the underlying interactions and phenomena.
Technical Paper

Spray Targeting to Minimize Soot and CO Formation in Premixed Charge Compression Ignition (PCCI) Combustion with a HSDI Diesel Engine

2006-04-03
2006-01-0918
The effect of spray targeting on exhaust emissions, especially soot and carbon monoxide (CO) formation, were investigated in a single-cylinder, high-speed, direct-injection (HSDI) diesel engine. The spray targeting was examined by sweeping the start-of-injection (SOI) timing with several nozzles which had different spray angles ranging from 50° to 154°. The tests were organized to monitor the emissions in Premixed Charge Compression Ignition (PCCI) combustion by introducing high levels of EGR (55%) with a relatively low compression ratio (16.0) and an open-crater type piston bowl. The study showed that there were optimum targeting spots on the piston bowl with respect to soot and CO formation, while nitric oxide (NOx) formation was not affected by the targeting. The soot and CO production were minimized when the spray was targeted at the edge of the piston bowl near the squish zone, regardless of the spray angle.
X